Structural Insights into the HIV-1 Minus-strand Strong-stop DNA.

نویسندگان

  • Yingying Chen
  • Ouerdia Maskri
  • Françoise Chaminade
  • Brigitte René
  • Jessica Benkaroun
  • Julien Godet
  • Yves Mély
  • Olivier Mauffret
  • Philippe Fossé
چکیده

An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first strand transfer that requires base pairing of the R region at the 3'-end of the genomic RNA with the complementary r region at the 3'-end of minus-strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the full-length HIV-1 ssDNA in the absence or presence of NC. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the three-dimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the NC-mediated annealing process does not rely on a single pathway (zipper intermediate or kissing complex).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein

HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (-) strong-stop DNA followed by rev...

متن کامل

Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase.

Two DNA strand transfer reactions occur during retroviral reverse transcription. The mechanism of the first, minus strand strong-stop DNA, transfer has been studied in vitro with human immunodeficiency virus 1 reverse transcriptase (HIV-1 RT) and a model template-primer system derived from the HIV-1 genome. The results reveal that HIV-1 RT alone can catalyze DNA strand transfer reactions. Two k...

متن کامل

Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis.

Reverse transcription of retroviral genomes starts near the 5' end of the viral RNA by use of an associated tRNA primer. According to the current model of reverse transcription, the initial cDNA product, termed minus-strand strong-stop DNA, 'jumps' to a repeated sequence (R region) at the 3' end of the RNA template. The human retroviruses have relatively long R regions (97-247 nucleotides) when...

متن کامل

Actinomycin D inhibits human immunodeficiency virus type 1 minus-strand transfer in in vitro and endogenous reverse transcriptase assays.

In this report we demonstrate that human immunodeficiency virus type 1 (HIV-1) minus-strand transfer, assayed in vitro and in endogenous reactions, is greatly inhibited by actinomycin D. Previously we showed that HIV-1 nucleocapsid (NC) protein (a nucleic acid chaperone catalyzing nucleic acid rearrangements which lead to more thermodynamically stable conformations) dramatically stimulates HIV-...

متن کامل

Acceptor RNA cleavage profile supports an invasion mechanism for HIV-1 minus strand transfer.

We previously proposed that HIV-1 minus strand transfer occurs by an acceptor invasion-initiated multi-step mechanism. During synthesis of minus strong stop DNA, reverse transcriptase (RT) transiently pauses at the base of TAR before continuing synthesis. Pausing promotes RT-RNase H cleavage of the donor RNA, exposing regions of the cDNA. The acceptor RNA then invades at these locations to inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 291 7  شماره 

صفحات  -

تاریخ انتشار 2016